COT 6405 Introduction to Theory of
Algorithms

Topic 16. Single source shortest path

11/18/2015

Problem definition

* Problem: given a weighted directed graph G,
find the minimum-weight path from a given
source vertex s to another vertex v
— “Shortest-path” -> Weight of the path is minimum
— Weight of a path is the sum of the weight of edges

— E.g., a road map: what is the shortest path from
USF ENB to USF water tower?

Formal definition

W(p), Weight of pathp = (v, v, ..., v)

k
W(p) = 2 v

= sum of edge weights on path p

Shortest-path weight, 6(u, v), from utov

. 2 . .
S(u, v) = MM {’UJ(P} LU~ L-‘} if there exists a path u ~ v,
otherwise .

Shortest path u to v 1s any path p such that w(p) = é(u, v).

Example: shortest paths from s
[d values appear inside vertices. Shaded edges show shortest paths.]

f’-

l X a : X

-3\‘ = -9\"- | : ,)

/{ i ; h_‘
; ol 1 0 :

s 7 7
5 a
xi/ 6 h\J_!/ >
y Z

« This example shows that the shortest path might not be unique

* It also shows that when we look at shortest paths from one vertex to
all other vertices, the shortest paths are organized as a tree.

Single source shortest path

 We can think of weights as representing any

measure that
— accumulates linearly along a path

— we want to minimize
 Examples: time, cost, penalties, loss.

e We can use the breadth-first search to find
shortest paths for un-weighted graphs

Variants can be solved by SSSP

Single-source: Find shortest paths from a
given source vertex s € Vto every vertex v € V.

Single-destination: Find shortest paths to a
given destination vertex.

Single-pair: Find shortest path from u to v.

All-pairs: Find shortest path from u to v for all
u vev.

Shortest path properties: optimal

Lemma
Amny subpath of a shortest path is a shortest path.

Froof Cutand-paste.

| L. e f £

TN N TN 4 TN
B I V)

Suppose this path p is a shortest path from u to v.
lhen d(u. v) = w(p) = wipux) + wlpyy) + wip,n).

i . Pxy
MNoow SUpp ose there exists ashorterpath x ~— .

Thenw(p,,) < w(py).

Construct p': 1

. P . I f“ n.
l-_." ", | i) l-_." ", . l-l."'_"-u'. 1 "'\-_I
e - 1 o ’ = - ’
'._____f_-!'f_l_h - _ 11_%-_14‘;.&%_ T h-.ﬂ_..l___‘.-l'\“u_ T e “E.-"'I

Cont’d

‘Then
w(p’) W(Pux) + wW(Py,) + w(py)
W(Pux) + w(pxy) + w(py)
w(p) .

Contradicts the assumption that p is a shortest path.

Al

Shortest path properties

* |n graphs with negative weight cycles, some
shortest paths will not exist:

— No shortest path from s to g: (s,e), (s,e,fe), ..

Negative-weight edges

* Negative weight edges are ok for some cases

— as long as no negative-weight cycles are reachable from the
source

— If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = —oo for all v on the cycle.

 Some algorithms work only if there are no negative-
weight edges in the graph.
— Dijkstra algorithm works on nonnegative weights
— WEe'll be clear when they’re allowed and not allowed

* Normally, we assume nonnegative weights

Cycles

Shortest paths cannot contain cycles:
— We already ruled out negative-weight cycles

— Positive-weight cycle = Removing the cycle will
give us a path with less weight

— Zero-weight cycle: no reason to use them =
assume that our solutions won’t use them.

Output of SSSP algorithm

* For each vertexv € V, v.d = 6(s, v)
— Initially, v.d = oo

— Reduces as algorithms progress. But always maintain
v.d > 6(s, v)

— Call v.d a shortest-path estimate
e rt[v] = predecessor of v on a shortest path from s

— If no predecessor, t[v] = NIL.
— rtinduces a tree: shortest-path tree.

Initialization

* All the shortest-paths algorithms start with
INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)
for each vertexv € G.V
v.d = oo
v.it = NIL
s.d=10

Initialization

* For all the single-source shortest-paths
algorithms we’ll look at,
— start by calling INIT-SINGLE-SOURCE,
— then relax edges by decreasing the path weight if
possible
* The algorithms differ in the order and how
many times they relax each edge.

Relaxation: reach v by u

Relax(u, v, w) {

if (v.d > u.d + w(u,v))
v.d = u.d + w(u,v)

V.l = U
}
= Relax
\ 4

U@ 2 o] IV

decrease by 2

= Relax

\ 4

unchanged 15

()—

Properties of shortest paths

* Triangle inequality
Forall (u,v) € E, wehave 8(s,v) < d(s,u) + w(u,v).

Proof Weight of shortest path s ~» v is < weight of any path § ~» v. Path
s~ u—visapah s ~ v, andif we use ashortest path 5 ~» u, its weight is
8(s,u) + w(u,v). o

16

Upper-bound property
Always have v.d = o(s,v)
— Once v.d = 9(s,v), it never changes
Proof: Initially, it is true: v.d = oo
Supposed v.d < 9(s,Vv)

Without loss of generality, v is the first vertex for this
happens

Let u be the vertex that causes v.d to change
Then v.d = u.d + w(u,v)

So, v.d < 9(s,v) <9d(s,u) +w (u,v) <u.d+ w(u,v)
Then v.d < u.d + w(u,v)

Contradict to v.d = u.d + w(u,Vv)

No-path property

e |f O(s,v) = oo, then v.d = o= always
* Proof:v.d 2> 9(s,v) =0 2 v.d =0

Convergence property

If s ~+ w — v is ashortestpath, u.d = 4(s, w), and we call RELAX(u, v, w), then
v.d=4(s,v) afterward.

Proof After relaxation:
vd < wd+w(y,v) (RELAX code
= 8(s,u) +w(u,v)
3(s,v) (lemma—optimal substructure)

Since v.d > §(s, v), musthave v.d = 8(s, v). 0

20

Path relaxation property

Let p = (vg, vi, ..., Vk) be a shortest path from s = vy to vg. If we relax,
in order, (vy,v;), (Vi,V3),..., (Vi_1, V), even intermixed with other relaxations,

then vi.d = 8(s, vg).
Proof Induction to show thatv;.d = §(s, v;) after (v;_;, v;) is relaxed
Basis: i = 0. Illiﬂﬂ“}ﬂ Fﬂ.d ={) = 5(.5', 1’1}) = 5{3,5).

Inductive step: Assume v;_;.d = §(s, v;—;). Relax (v;_;,v;). By convergence
property, v;.d = (s, v;) afterward and v;. d never changes. 0

21

Bellman-Ford Algorithm

* Allows negative-weight edges.
e Computes v.d and v.tforall v e V.

* Returns
— TRUE, if no negative-weight cycles reachable from
S,
— FALSE, otherwise.

Bellman-Ford algorithm

BellmanFord (G, w, s)

|N|T-S|NGLE-SOURCE(G, S) Relaxation:
for i=1 to |G.V|-1 } Make |V|-1 passes,
for each edge (u,v) € G.E relaxing each edge

Relax(u, v, w);

for each edge (u,v) € G.E :}.Test for soluti?n.
if (v.d > u.d + w(u,v)) Under what condition

_ do we get a solution?
return “no solution”;

Relax(u,v,w): 1if (v.d > u.d + w(u,v))
v.d = u.d + w(u,v)

Bellman-Ford Algorithm

BellmanFord (G, w, s)

INIT-SINGLE-SOURCE(G, s)
for i=1 to |G.V|-1

What will be the
running time?

for each edge (u,v) € G.E

Relax(u, v, w);

A: O(VE)

for each edge (u,v) € G.E
if (v.d > u.d + w(u,v))

return “‘no solution”;

Relax(u,v,w): 1if (v.d > u.d + w(u,v))
v.d = u.d + w(u,v)

Example

(tlx)l (t’y)’ (tlz)l (Xlt)l (ylx)l
(v,2), (z,x), (z,5), (s,t), (s,y)

inital

31>

After
Pass 1

After
Pass 2

After
Pass 3

After
Pass 4

Pass 1

* (tx), (ty), (t,z), (xt), (v,x), (v,2), (z,x), (z,5), (s,2), (s,y)

Example

* (tx), (ty), (t,z2), (xt), (y,x), (y,2),
(z,x), (2,5), (s,t), (s,y)

ds |d, |d, |d, |d,
inital O | 0O |00|00 |00
After O |6 |op|7.s o0
Pass 1
After 0
Pass 2
After 0
Pass 3
After 0
Pass 4

Pass 2

* (tx), (ty), (t,z), (xt), (v,x), (v,2), (z,x), (z,5), (s,2), (s,y)

Example

(t.x), (ty), (t.2), (x,0), (y.x), (,2).
(2.%), (2,5), (:1), (S,y)

d, |d, |d, |d, |d,
inital O | ocO|00|00O |00
After 0O |6s |op|7.s 0
Pass 1
After O |6, |4y |7, |2t
Pass 2
After
Pass 3
After

Pass 4

Pass 3

* (tx), (ty), (t,z), (xt), (v,x), (v,2), (z,x), (z,5), (s,2), (s,y)

Example

(t.x), (ty), (t.2), (x,1), (y.X), (¥,2),
(2.X), (2.3), (s.1), (s.Y)

ds |d, |d,|d, |d,
inital 0 |00 |00 |00 |00
After 0 6,S o0 7,S o0
Pass 1
After O |6,s |4y |7,5 |2t
Pass 2
After 0O |2x |4y |7, |2t
Pass 3
After 0

Pass 4

Pass 4

* (tx), (ty), (t,z), (xt), (v,x), (v,2), (z,x), (z,5), (s,2), (s,y)

Example

(t.x), (L), (t.2), (X.t), (y.X), (¥,2),
(2.X), (2.3), (s.1), (s)y)

d, |d,|d, |d,
inital o0 |00 |00 |00
After 6,S o0 7,8 o0
Pass 1
After 6,s (4y |7,5 |21
Pass 2
After 2X |4y | 1,5 |2t
Pass 3
After 2X |4y 7,5 |-2t

Pass 4

Running time

nitialization: ©(V)

line 2-4 : ©(E) * |V]|-1 passes
line 5-7 : O(E)

O(VE)

Correctness

Proof Use path-relaxation property.

Letv be reachable from s, and let p = (vg, vy, ..., vg) be a shortest path from s
to v, where vy = 5 and vy = v. Since p is acydlic, ithas < |V| - 1 edges, so
k<|V|-1.

Fach iteration of the for loop relaxes all edges:

* Firstiteration relaxes (vg, v;).

* Second iteration relaxes (vy, v,).

* kthiteration relaxes (vg_y, vi).

By the path-relaxation property, v.d = vg.d = (s, v¢) = (s, v). N

35

Correctness

How about the TRUEFALSE retum value?

* Suppose there is no negative- weight ¢y cle reachable from s.
Attermination, forall (u,v) € E,
v.d 8(s,v)

§(s,u) +w(u,v) (triangle inequality)

u.d+ wiu,v).

So B ELLMAN-FORD retums TRUE.

1A

36

Now suppose there exists negative-weight cycle ¢ = (vy, vy, ..., Vi), where
Vo = V, reachable from s.

k
Then " w(v;_y, ;) < O

=1

Slppfme (for confradiction) that B F.LLMAN-FORD retums TRUE.
Thenv;.d < vi_;.d+ w(vi—y,v) fori = 1,2,... k.

Sum around c:

k k
D vid <) (vid+wviog,v))

k k
Y vicd+) wviig,)
i=1 i=1

The contradiction

K

l 1 Vi d < Z 1 Vi-1- d + Zi=1W(vi—1; vi)
—>

l 1 Vi. d — Zl 1 Vi-1- d < Z 1W(vl 1:”1)
=> N w1, v) 2 Vg d - vo.d
Since vy = vy, (cis a cycle),

k

1 W(vi_1,1;) 20

Th|s contradicts ¢ being a negative-weight
cycle

Dijkstra’s Algorithm

* |f no negative edge weights, we can beat
Bellman Ford

e Similar to breadth-first search

— Grow a tree gradually, advancing from vertices
taken from a queue

e Also similar to Prim’s algorithm for MST
— Use a priority queue keyed on v.d

Dijkstra’s Algorithm

« Assumes no negative-weight edges.
» Maintains a vertex set S whose shortest path from s has been

determined.
 Repeatedly selects u in V=S with minimum Shortest Path estimate

(greedy choice).

« Store V=S in priority queue Q. | DIJKSTRA(G, w, s)
Initialize-SINGLE-SOURCE(G, s);
S=¢,;
Q=G.V;
while Q = &
u = Extract-Min(Q);
S=Su{u};
for each v e G.Adj[u]
Relax(u, v, w)

Example

Example

52

Example

53

Example

54

Example

u Vv

55

Example

u Vv

56

Dijkstra’s Algorithm

Dijkstra (G)
for each v € V
v.d = o0;
s.d=0; S=0; Q=V;
while (Q # J)
u = ExtractMin (Q) ;
S =8 U {u};
for each v € u->G.Adj[]
if (v.d > u.d+w(u,v))

Note: this
is really a
call to Q->DecreaseKey ()

v.d = u.d + w(u,v);

}

Relaxation
Step

Dijkstra’s correctness

We will prove that whenever u is added to S,
u.d=o(s,u), i.e., that d is minimum, and that
equality is maintained thereafter

Proof
— Note that Yv, v.d > 5(s,v)

— let u be the first vertex for which u.d # 6(s, u) (i.e.,
u.d > o(s,u)) when it is added to set S.

— We will show that the assumption of such a vertex
leads to a contradiction

Correctness (Cont’d)

* A shortest path p from source s to vertex u can
be decomposed into :

—-p1S—X,
— x>y
—P2:Yy—Uu

 where y is the first vertex on the path that is
not in S and x € S immediately precedes y

Correctness (Cont’d)

* Then, it must be that y.d = 0o(s,y) because

— X.d is set correctly for y's predecessor x €S on the
shortest path (by choice of u as the first vertex for
which d is set incorrectly)

— when the algorithm inserted x into S, it relaxed the
edge (x,y), assigning y.d the correct value

Correctness (Cont’d)

* Thus, y.d =0(s,y)
S5(S,U) (y appears before u on the shortestpath)
<u.d (upper-bound property)

‘But because both u and y are in V-S when u was
chosen, we have u.d < y.d, and therefore the two
inequalities are in fact equalities, -

v.d =0(s,y) = o(s,u) = u.d

Consequently, u.d = o(s,u), which contradicts our
choice of u

Dijkstra’s running time

Dijkstra (G)

How many times 1is
for each v € V

ExtractMin() called?

v.d= o©;
A: |V]|

s.d=0; S=J; Q =V;
while (Q # J)
u = ExtractMin (Q) ;
S =8 U {u};
for each v € u->Adj[] A: |E]
if (v.d > u.d+w(u,v))

DecreaseKey(v.d,u.d+w(u,v)) ;

How many times 1is
DecreaseKey () called?

What will be the total running time?

63

Dijkstra’s Running Time

Extract-Min executed |V| time

Decrease-

Time= |V
Time = O(VIgV) + O (ElgV) = O(ElgV)

Key executed |E| time

TExtract—Min t | E | TDecrease—Key

Summary

* We learned
— Shortest-Path Problems
— Properties of Shortest Paths, Relaxation
— Bellman-Ford Algorithm
— Dijkstra’s Algorithm
e Common mistakes: Do not forget to relax all
edges in all algorithms.

