
COT 6405 Introduction to Theory of
Algorithms

Topic 16. Single source shortest path

11/18/2015 1

Problem definition

• Problem: given a weighted directed graph G,
find the minimum-weight path from a given
source vertex s to another vertex v

– “Shortest-path” -> Weight of the path is minimum

– Weight of a path is the sum of the weight of edges

– E.g., a road map: what is the shortest path from
USF ENB to USF water tower?

11/18/2015 2

• W(p), Weight of path p = (v0, v1, . . . , vk)

• W(p)

= sum of edge weights on path p

• Shortest-path weight, δ(u, v) , from u to v

3

Formal definition

• This example shows that the shortest path might not be unique

• It also shows that when we look at shortest paths from one vertex to

all other vertices, the shortest paths are organized as a tree.

4

Single source shortest path

• We can think of weights as representing any
measure that
– accumulates linearly along a path

– we want to minimize

• Examples: time, cost, penalties, loss.

• We can use the breadth-first search to find
shortest paths for un-weighted graphs

5

Variants can be solved by SSSP

• Single-source: Find shortest paths from a
given source vertex s ∈ V to every vertex v ∈ V.

• Single-destination: Find shortest paths to a
given destination vertex.

• Single-pair: Find shortest path from u to v.

• All-pairs: Find shortest path from u to v for all
u, v ∈ V.

6

Shortest path properties: optimal
substructure

7

Cont’d

8

Shortest path properties

• In graphs with negative weight cycles, some
shortest paths will not exist:

– No shortest path from s to e: (s,e), (s,e,f,e), …

9

Negative-weight edges
• Negative weight edges are ok for some cases

– as long as no negative-weight cycles are reachable from the
source

– If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = −∞ for all v on the cycle.

• Some algorithms work only if there are no negative-
weight edges in the graph.

– Dijkstra algorithm works on nonnegative weights

– We’ll be clear when they’re allowed and not allowed

• Normally, we assume nonnegative weights

10

Cycles

• Shortest paths cannot contain cycles:

– We already ruled out negative-weight cycles

– Positive-weight cycle ⇒ Removing the cycle will
give us a path with less weight

– Zero-weight cycle: no reason to use them ⇒
assume that our solutions won’t use them.

11/18/2015 11

Output of SSSP algorithm

• For each vertex v ∈ V, v.d = δ(s, v)
– Initially, v.d = ∞

– Reduces as algorithms progress. But always maintain
v.d ≥ δ(s, v)

– Call v.d a shortest-path estimate

• π[v] = predecessor of v on a shortest path from s
– If no predecessor, π[v] = NIL.

– π induces a tree: shortest-path tree.

12

Initialization

• All the shortest-paths algorithms start with
INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)

for each vertex v ∈ G.V

v.d = ∞

v.π = NIL

s.d = 0

13

Initialization

• For all the single-source shortest-paths
algorithms we’ll look at,

– start by calling INIT-SINGLE-SOURCE,

– then relax edges by decreasing the path weight if
possible

• The algorithms differ in the order and how
many times they relax each edge.

14

Relaxation: reach v by u

Relax(u, v, w) {

if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)

v. = u

}

15

95 2

75 2

Relax

65 2

65 2

Relax

u

u

u

u

v

v

v

v

decrease by 2 unchanged

Properties of shortest paths

• Triangle inequality

16

u

s v

Upper-bound property
• Always have v.d ≥ (s,v)

– Once v.d = (s,v), it never changes

• Proof: Initially, it is true: v.d = ∞

• Supposed v.d < (s,v)

• Without loss of generality, v is the first vertex for this
happens

• Let u be the vertex that causes v.d to change

• Then v.d = u.d + w(u,v)

• So, v.d < (s,v) ≤ (s,u) + w (u,v) < u.d + w(u,v)

• Then v.d < u.d + w(u,v)

• Contradict to v.d = u.d + w(u,v)
17

No-path property

• If (s,v) = ∞, then v.d = ∞ always

• Proof: v.d ≥ (s,v) = ∞  v.d = ∞

19

Convergence property

20

Path relaxation property

21

Bellman-Ford Algorithm

• Allows negative-weight edges.

• Computes v.d and v.π for all v ∈ V.

• Returns

– TRUE, if no negative-weight cycles reachable from
s ;

– FALSE, otherwise.

22

Bellman-Ford algorithm

BellmanFord(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i=1 to |G.V|-1

for each edge (u,v)  G.E

Relax(u, v, w);

for each edge (u,v)  G.E

if (v.d > u.d + w(u,v))

return “no solution”;

Relax(u,v,w): if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)

Relaxation:

Make |V|-1 passes,

relaxing each edge

Test for solution

Under what condition

do we get a solution?

23

Bellman-Ford Algorithm

BellmanFord(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i=1 to |G.V|-1

for each edge (u,v)  G.E

Relax(u, v, w);

for each edge (u,v)  G.E

if (v.d > u.d + w(u,v))

return “no solution”;

Relax(u,v,w): if (v.d > u.d + w(u,v))

v.d = u.d + w(u,v)

What will be the

running time?

A: O(VE)

24

Example
• (t,x), (t,y), (t,z), (x,t), (y,x),

(y,z), (z,x), (z,s), (s,t), (s,y)

0

∞ ∞

∞∞

6

7

5

-2

8

2

9

7

-3

-4
s

t x

y z

ds dt dx dy dz

inital 0

After

Pass 1

After

Pass 2

After

Pass 3

After

Pass 4

  

25

Pass 1

26

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

0

∞ ∞

∞∞

6

7

5

-2

8

2

9

7

-3

-4
s

t x

y z

6

7

Example

ds dt dx dy dz

inital

After

Pass 1

0 6,s 7,s

After

Pass 2

0

After

Pass 3

0

After

Pass 4

0

0

0

6 ∞

∞7

6

7

5

-2

8

2

9

7

-3

-4

s

t x

y z

 


 

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z),
(z,x), (z,s), (s,t), (s,y)

27

Pass 2

28

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

0

6 ∞

∞7

6

7

5

-2

8

2

9

7

-3

-4
s

t x

y z

11

2

4

Example

0

6 4

27

6

7

5

-2

8

2

9

7

-3

-4

s

t x

y

ds dt dx dy dz

inital

After

Pass 1

0 6,s 7,s

After

Pass 2

0 6,s 4,y 7,s 2,t

After

Pass 3

After

Pass 4z

 


 

29

0

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z),

(z,x), (z,s), (s,t), (s,y)

Pass 3

30

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

0

6 4

27

6

7

5

-2

8

2

9

7

-3

-4
s

t x

y z

2

Example

0

2 4

27

6

7

5

-2

8

2

9

7

-3

-4

s

t x

y z

ds dt dx dy dz

inital 0

After

Pass 1

0 6,s 7,s

After

Pass 2

0 6,s 4,y 7,s 2,t

After

Pass 3

0 2,x 4,y 7,s 2,t

After

Pass 4

0

 



 

31

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z),

(z,x), (z,s), (s,t), (s,y)

Pass 4

32

• (t,x), (t,y), (t,z), (x,t), (y,x), (y,z), (z,x), (z,s), (s,t), (s,y)

0

2 4

27

6

7

5

-2

8

2

9

7

-3

-4
s

t x

y z

-2

Example

0

2 4

-27

6

7

5

-2

8

2

9

7

-3

-4

s

t x

y
z

ds dt dx dy dz

inital 0

After

Pass 1

0 6,s 7,s

After

Pass 2

0 6,s 4,y 7,s 2,t

After

Pass 3

0 2,x 4,y 7,s 2,t

After

Pass 4

0 2,x 4,y 7,s -2,t

 



 

33

(t,x), (t,y), (t,z), (x,t), (y,x), (y,z),

(z,x), (z,s), (s,t), (s,y)

Running time

• Initialization: Θ(V)

• Line 2-4 : Θ(E) * |V|-1 passes

• Line 5-7 : O(E)

• O(VE)

34

Correctness

35

Correctness

36

37

𝑖=1

𝑘

𝑤(𝑣𝑖−1, 𝑣𝑖) < 0

The contradiction

• 𝑖=1
𝑘 𝑣𝑖 . 𝑑 ≤ 𝑖=1

𝑘 𝑣𝑖−1. 𝑑 + 𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖)

• =>

 𝑖=1
𝑘 𝑣𝑖 . 𝑑 − 𝑖=1

𝑘 𝑣𝑖−1. 𝑑 ≤ 𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖)

• => 𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖) ≥ 𝑣𝑘 . 𝑑 - 𝑣0. 𝑑

• Since 𝑣0 = 𝑣𝑘 (c is a cycle),

• 𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖) ≥0

• This contradicts c being a negative-weight
cycle

11/18/2015 38

Dijkstra’s Algorithm

• If no negative edge weights, we can beat
Bellman Ford

• Similar to breadth-first search

– Grow a tree gradually, advancing from vertices
taken from a queue

• Also similar to Prim’s algorithm for MST

– Use a priority queue keyed on v.d

49

Dijkstra’s Algorithm

• Assumes no negative-weight edges.

• Maintains a vertex set S whose shortest path from s has been

determined.

• Repeatedly selects u in V–S with minimum Shortest Path estimate

(greedy choice).

• Store V–S in priority queue Q. DIJKSTRA(G, w, s)

Initialize-SINGLE-SOURCE(G, s);

S = ;

Q = G.V;

while Q  

u = Extract-Min(Q);

S = S  {u};

for each v  G.Adj[u]

Relax(u, v, w)

50

Example

0





s

u v

x y

10

1

9

2

4 6

5

2 3

7

51

Example

0

5

10

s

u v

x y

10

1

9

2

4 6

5

2 3

7

52

Example

0

75

148

s

u v

x y

10

1

9

2

4 6

5

2 3

7

53

Example

0

75

138

s

u v

x y

10

1

9

2

4 6

5

2 3

7

54

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

55

Example

0

75

98

s

u v

x y

10

1

9

2

4 6

5

2 3

7

56

Dijkstra’s Algorithm

Dijkstra(G)

for each v  V

v.d = ;

s.d = 0; S = ; Q = V;

while (Q  )

u = ExtractMin(Q);

S = S U {u};

for each v  u->G.Adj[]

if (v.d > u.d+w(u,v))

v.d = u.d + w(u,v);

Relaxation

Step
Note: this

is really a

call to Q->DecreaseKey()
57

Dijkstra’s correctness

• We will prove that whenever u is added to S,
u.d= (s,u), i.e., that d is minimum, and that
equality is maintained thereafter

• Proof

– Note that "v, v.d  (s,v)

– let u be the first vertex for which u.d ≠ δ(s, u) (i.e.,

u.d > (s,u)) when it is added to set S.

– We will show that the assumption of such a vertex

leads to a contradiction
11/18/2015 58

Correctness (Cont’d)

• A shortest path p from source s to vertex u can
be decomposed into :

– 𝑝1 𝑠 → 𝑥 ,

– 𝑥 → 𝑦

– 𝑝2 ∶ 𝑦 → 𝑢

• where y is the first vertex on the path that is
not in S and x ∈ S immediately precedes y

11/18/2015 59

Correctness (Cont’d)

• Then, it must be that y.d = (s,y) because
– X.d is set correctly for y's predecessor x S on the

shortest path (by choice of u as the first vertex for
which d is set incorrectly)

– when the algorithm inserted x into S, it relaxed the
edge (x,y), assigning y.d the correct value

60

Correctness (Cont’d)

• Thus, y.d = (s,y)
≤(s,u) (y appears before u on the shortestpath)
≤u.d (upper-bound property)

But because both u and y are in V-S when u was
chosen, we have u.d ≤ y.d, and therefore the two
inequalities are in fact equalities,

y.d = (s,y) = (s,u) = u.d
Consequently, u.d = (s,u), which contradicts our
choice of u

61

Dijkstra’s running time

Dijkstra(G)

for each v  V

v.d= ;

s.d = 0; S = ; Q = V;

while (Q  )

u = ExtractMin(Q);

S = S U {u};

for each v  u->Adj[]

if (v.d > u.d+w(u,v))

DecreaseKey(v.d,u.d+w(u,v));

63

How many times is

ExtractMin() called?

How many times is

DecreaseKey()called?

What will be the total running time?

A: |V|

A: |E|

Dijkstra’s Running Time

• Extract-Min executed |V| time

• Decrease-Key executed |E| time

• Time = |V| TExtract-Min + |E| TDecrease-Key

• Time = O(VlgV) + O (ElgV) = O(ElgV)

11/18/2015 64

Summary

• We learned

– Shortest-Path Problems

– Properties of Shortest Paths, Relaxation

– Bellman-Ford Algorithm

– Dijkstra’s Algorithm

• Common mistakes: Do not forget to relax all
edges in all algorithms.

65

