
COT 6405 Introduction to Theory of 
Algorithms

Topic 16. Single source shortest path
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Problem definition

• Problem: given a weighted directed graph G, 
find the minimum-weight path from a given 
source vertex s to another vertex v

– “Shortest-path” -> Weight of the path is minimum  

– Weight of a path is the sum of the weight of edges 

– E.g., a road map: what is the shortest path from 
USF ENB  to USF water tower?
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• W(p), Weight of path p = (v0, v1, . . . , vk )

• W(p)

= sum of edge weights on path p

• Shortest-path weight, δ(u, v) , from u to v
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Formal definition



• This example shows that the shortest path might not be unique

• It also shows that when we look at shortest paths from one vertex to 

all other vertices, the shortest paths are organized as a tree. 
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Single source shortest path

• We can think of weights as representing any 
measure that 
– accumulates linearly along a path

– we want to minimize

• Examples: time, cost, penalties, loss.

• We can use the breadth-first search to find 
shortest paths for un-weighted graphs
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Variants can be solved by SSSP

• Single-source: Find shortest paths from a 
given source vertex s ∈ V to every vertex v ∈ V.

• Single-destination: Find shortest paths to a 
given destination vertex.

• Single-pair: Find shortest path from u to v. 

• All-pairs: Find shortest path from u to v for all 
u, v ∈ V. 

6



Shortest path properties: optimal 
substructure
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Cont’d
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Shortest path properties

• In graphs with negative weight cycles, some 
shortest paths will not exist:

– No shortest path from s to e: (s,e), (s,e,f,e), …
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Negative-weight edges
• Negative weight edges are ok for some cases

– as long as no negative-weight cycles are reachable from the 
source 

– If we have a negative-weight cycle, we can just keep going 
around it, and get w(s, v) = −∞ for all v on the cycle.

• Some algorithms work only if there are no negative-
weight edges in the graph.

– Dijkstra algorithm works on nonnegative weights

– We’ll be clear when they’re allowed and not allowed

• Normally, we assume nonnegative weights
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Cycles

• Shortest paths cannot contain cycles:

– We already ruled out negative-weight cycles

– Positive-weight cycle ⇒ Removing the cycle will 
give us a path with less weight

– Zero-weight cycle: no reason to use them ⇒
assume that our solutions won’t use them.
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Output of SSSP algorithm

• For each vertex v ∈ V, v.d = δ(s, v)
– Initially, v.d = ∞

– Reduces as algorithms progress. But always maintain 
v.d ≥ δ(s, v)

– Call v.d a shortest-path estimate

• π[v] = predecessor of v on a shortest path from s
– If no predecessor, π[v] = NIL.

– π induces a tree: shortest-path tree.
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Initialization

• All the shortest-paths algorithms start with 
INIT-SINGLE-SOURCE

INIT-SINGLE-SOURCE(G, s)

for each vertex v ∈ G.V

v.d = ∞

v.π = NIL

s.d = 0
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Initialization

• For all the single-source shortest-paths 
algorithms we’ll look at,

– start by calling INIT-SINGLE-SOURCE,

– then relax edges by decreasing the path weight if 
possible

• The algorithms differ in the order and how 
many times they relax each edge.
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Relaxation: reach v by u

Relax(u, v, w) { 

if (v.d > u.d + w(u,v)) 

v.d = u.d + w(u,v)

v. = u

}
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Properties of shortest paths

• Triangle inequality
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Upper-bound property
• Always have v.d ≥ (s,v)

– Once v.d = (s,v), it never changes

• Proof: Initially, it is true:  v.d = ∞

• Supposed v.d < (s,v)

• Without loss of generality, v is the first vertex for this 
happens

• Let u be the vertex that causes v.d to change

• Then v.d = u.d + w(u,v)

• So, v.d < (s,v)  ≤ (s,u) + w (u,v) < u.d + w(u,v)

• Then v.d < u.d + w(u,v)

• Contradict to v.d = u.d + w(u,v)
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No-path property

• If (s,v) = ∞, then v.d = ∞ always

• Proof: v.d ≥ (s,v) = ∞  v.d = ∞ 
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Convergence property
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Path relaxation property
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Bellman-Ford Algorithm

• Allows negative-weight edges.

• Computes v.d and v.π for all v ∈ V.

• Returns 

– TRUE, if no negative-weight cycles reachable from 
s ; 

– FALSE,  otherwise.
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Bellman-Ford algorithm

BellmanFord(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i=1 to |G.V|-1

for each edge (u,v)  G.E

Relax(u, v, w);

for each edge (u,v)  G.E

if (v.d > u.d + w(u,v))

return “no solution”;

Relax(u,v,w): if (v.d > u.d + w(u,v)) 

v.d = u.d + w(u,v)

Relaxation: 

Make |V|-1 passes, 

relaxing each edge

Test for solution

Under what condition

do we get a solution?
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Bellman-Ford Algorithm

BellmanFord(G, w, s)

INIT-SINGLE-SOURCE(G, s)

for i=1 to |G.V|-1

for each edge (u,v)  G.E

Relax(u, v, w);

for each edge (u,v)  G.E

if (v.d > u.d + w(u,v))

return “no solution”;

Relax(u,v,w): if (v.d > u.d + w(u,v)) 

v.d = u.d + w(u,v)

What will be the 

running time?

A: O(VE)
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Pass 1
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Example
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Pass 2
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Example
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Pass 3
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Example
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Pass 4
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Example
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Running time

• Initialization: Θ(V)

• Line 2-4 : Θ(E) * |V|-1 passes

• Line 5-7 : O(E)

• O(VE)
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Correctness
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Correctness
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𝑖=1

𝑘

𝑤(𝑣𝑖−1, 𝑣𝑖) < 0



The contradiction

•  𝑖=1
𝑘 𝑣𝑖 . 𝑑 ≤  𝑖=1

𝑘 𝑣𝑖−1. 𝑑 +  𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖)

• => 

 𝑖=1
𝑘 𝑣𝑖 . 𝑑 −  𝑖=1

𝑘 𝑣𝑖−1. 𝑑 ≤  𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖)

• =>  𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖) ≥ 𝑣𝑘 . 𝑑 - 𝑣0. 𝑑

• Since 𝑣0 = 𝑣𝑘 (c is a cycle), 

•  𝑖=1
𝑘 𝑤(𝑣𝑖−1, 𝑣𝑖) ≥0

• This contradicts c being a negative-weight 
cycle
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Dijkstra’s Algorithm

• If no negative edge weights, we can beat 
Bellman Ford

• Similar to breadth-first search

– Grow a tree gradually, advancing from vertices 
taken from a queue

• Also similar to Prim’s algorithm for MST

– Use a priority queue keyed on v.d
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Dijkstra’s Algorithm

• Assumes no negative-weight edges.

• Maintains a vertex set S whose shortest path from s has been 

determined.

• Repeatedly selects u in V–S with minimum Shortest Path estimate 

(greedy choice).

• Store V–S in priority queue Q. DIJKSTRA(G, w, s)

Initialize-SINGLE-SOURCE(G, s);

S = ;

Q = G.V;

while Q  

u = Extract-Min(Q);

S = S  {u};

for each v  G.Adj[u]

Relax(u, v, w)
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Example
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Dijkstra’s Algorithm

Dijkstra(G)

for each v  V

v.d = ;

s.d = 0; S = ; Q = V;

while (Q  )

u = ExtractMin(Q);

S = S U {u};

for each v  u->G.Adj[]

if (v.d > u.d+w(u,v))

v.d = u.d + w(u,v);

Relaxation

Step
Note: this

is really a 

call to Q->DecreaseKey()
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Dijkstra’s correctness

• We will prove that whenever u is added to S, 
u.d= (s,u), i.e., that d is minimum, and that 
equality is maintained thereafter

• Proof

– Note that "v, v.d  (s,v)

– let u be the first vertex for which u.d ≠ δ(s, u) (i.e., 

u.d > (s,u)) when it is added to set S.

– We will show that the assumption of such a vertex 

leads to a contradiction
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Correctness (Cont’d)

• A shortest path p from source s to vertex u can 
be decomposed into : 

– 𝑝1 𝑠 → 𝑥 ,

– 𝑥 → 𝑦

– 𝑝2 ∶ 𝑦 → 𝑢

• where y is the first vertex on the path that is 
not in S and x ∈ S immediately precedes y
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Correctness (Cont’d)

• Then, it must be that y.d = (s,y)  because
– X.d is set correctly for y's predecessor x S on the 

shortest path (by choice of u as the first vertex for 
which d is set incorrectly)

– when the algorithm inserted x into S, it relaxed the 
edge (x,y), assigning y.d the correct value
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Correctness (Cont’d)

• Thus, y.d = (s,y)
≤(s,u) (y appears before u on the shortestpath)
≤u.d (upper-bound property)

But because both u and y are in V-S when u was 
chosen, we have u.d ≤ y.d, and therefore the two 
inequalities are in fact equalities,

y.d = (s,y) = (s,u) = u.d
Consequently, u.d = (s,u), which contradicts our 
choice of u
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Dijkstra’s running time

Dijkstra(G)

for each v  V

v.d= ;

s.d = 0; S = ; Q = V;

while (Q  )

u = ExtractMin(Q);

S = S U {u};

for each v  u->Adj[]

if (v.d > u.d+w(u,v))

DecreaseKey(v.d,u.d+w(u,v));
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How many times is 

ExtractMin() called?

How many times is 

DecreaseKey()called?

What will be the total running time?

A: |V|

A: |E|



Dijkstra’s Running Time

• Extract-Min executed |V| time

• Decrease-Key executed |E| time

• Time = |V| TExtract-Min + |E| TDecrease-Key

• Time = O(VlgV) + O (ElgV) = O(ElgV)
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Summary 

• We learned

– Shortest-Path Problems

– Properties of Shortest Paths, Relaxation

– Bellman-Ford Algorithm

– Dijkstra’s Algorithm

• Common mistakes: Do not forget to relax all 
edges in all algorithms. 
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